Do volcanic eruptions enhance or diminish net primary production? Evidence from tree rings
نویسندگان
چکیده
[1] Low growth rates of atmospheric CO2 were observed following the 1991 Pinatubo (Luzon) volcanic eruption. One hypothesis for this CO2 anomaly is that since diffuse light is more efficiently used by forests than direct light, the increase in the diffuse fraction of sunlight due to scattering by volcanic sulfur aerosol in the years following the eruption substantially increased forest net primary production (NPP). However, other observations suggest a decrease in northern forest NPP because of the cooler conditions following the eruption. Here we used a global database of dated tree ring widths (which correlate with forest NPP) to test this hypothesis. Ice core records of sulfur deposition allowed us to identify the timing and magnitude of 23 Pinatubo-scale eruptions since 1000 CE. We found a significant decrease in ring width for trees in middle to high northern latitudes (north of 45 N) following eruption sulfur peaks. Decreases in tree ring widths were in the range of 2–8% and persisted for 8 years following sulfur peaks, with minima at around 4–6 years. Ring width changes at lower latitudes in the Northern Hemisphere (30 N to 45 N) and in the Southern Hemisphere (30 S to 56 S) were not significant. In the tropics (30 N to 30 S) the paucity of tree ring records did not permit the evaluation of NPP changes. Given that elevated aerosol levels and summer cooling last only 2–3 years after an eruption, the persistence of declines in northern tree growth for up to 8 years after eruptions implies some additional mechanism that links these shorter-lived global eruption effects to sustained changes in tree physiology, biogeochemistry, or microclimate. At least for this sample of trees, the beneficial effect of aerosol light scattering appears to be entirely offset by the deleterious effect of eruption-induced climate change.
منابع مشابه
Bristlecone pine tree rings and volcanic eruptions over the last 5000 yr
Many years of low growth identified in a western USA regional chronology of upper forest border bristlecone pine (Pinus longaeva and Pinus aristata) over the last 5000 yr coincide with known large explosive volcanic eruptions and/or ice core signals of past eruptions. Over the last millennium the agreement between the tree-ring data and volcano/ice-core data is high: years of ring-width minima ...
متن کاملCan tree-ring chemistry reveal absolute dates for past volcanic eruptions?
Discussion of the significance of volcanically induced impacts on human history, the natural environment, and climate through the Holocene, has frequently stalled because of controversy concerning certain key volcanic eruptions and their precise relationships with the archaeological/environmental record. A major stumbling block in such debates is a failure to obtain precise and accurate dates f...
متن کاملCooling Following Large Volcanic Eruptions Corrected for the Effect of Diffuse Radiation on Tree Rings
The lack of a larger cooling in proxy records of climate change following large volcanic eruptions such as those of Tambora in 1815 and Krakatau in 1883 has long been a puzzle for climatologists. These records, however, may have been biased by enhanced tree growth for several years following each eruption induced by additional diffuse radiation caused by the stratospheric volcanic aerosol cloud...
متن کاملUnderestimation of volcanic cooling in tree-ring-based reconstructions of hemispheric temperatures
The largest eruption of a tropical volcano during the past millennium occurred in AD 1258–1259. Its estimated radiative forcing was several times larger than the 1991 Pinatubo eruption1. Radiative forcing of that magnitude is expected to result in a climate cooling of about 2 C (refs 2–5). This effect, however, is largely absent from tree-ring reconstructions of temperature6–8, and is muted in ...
متن کاملTree growth response to the 1913 eruption of Volcán de Fuego de Colima, Mexico
The impact of volcanic eruptions on forest ecosystems can be investigated using dendrochronological records. While long-range effects are usually mediated by decreased air temperatures, resulting in frost rings or reduced maximum latewood density, local effects include abrupt suppression of radial growth, occasionally followed by greater than normal growth rates. Annual rings in Mexican mountai...
متن کامل